Quantum Field Theory at Finite Temperature: an Introduction

نویسنده

  • J Zinn-Justin
چکیده

In these notes we review some properties of Statistical Quantum Field Theory at equilibrium, i.e Quantum Field Theory at finite temperature. We explain the relation between finite temperature quantum field theory in (d, 1) dimensions and statistical classical field theory in d + 1 dimensions. This identification allows to analyze the finite temperature QFT in terms of the renormalization group and the theory of finite size effects of the classical theory. We discuss in particular the limit of high temperature (HT) or the situation of finite temperature phase transitions. There the concept of dimensional reduction plays an essential role. Dimensional reduction in some sense reflects the known property that quantum effects are not important at high temperature. We illustrate these ideas with several standard examples, φ 4 field theory, the non-linear σ model and the Gross–Neveu model, gauge theories. We construct the corresponding effective reduced theories at one-loop order, using the technique of mode expansion of fields in the imaginary time variable. In models where the field is a vector with N components, the large N expansion provides another specially convenient tool to study dimensional reduction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Combined effects of pressure, temperature, and magnetic field on the ground state of donor impurities in a GaAs/AlGaAs quantum heterostructure

In the present work, the exact diagonalization method had been implemented to calculate the ground state energy of shallow donor impurity located at finite distance along the growth axis in GaAs/AlGaAs heterostructure in the presence of a magnetic field taken to be along z direction. The impurity binding energy of the ground state had been calculated as a function of confining frequency and mag...

متن کامل

Lattice QCD at finite temperature and density

QCD at finite temperature and density is becoming increasingly important for various experimental programmes, ranging from heavy ion physics to astro-particle physics. The non-perturbative nature of non-abelian quantum field theories at finite temperature leaves lattice QCD as the only tool by which we may hope to come to reliable predictions from first principles. This requires careful extrapo...

متن کامل

ar X iv : h ep - p h / 04 11 29 3 v 1 22 N ov 2 00 4 Chiral Lagrangians at finite temperature and the Polyakov Loop

Heat kernel expansions at finite temperature of massless QCD and chiral quark models generate effective actions relevant for both low and high temperature QCD. The key relevance of the Polyakov Loop to maintain the large and non-perturbative gauge invariance at finite temperature is stressed. In the imaginary time formulation of quantum field theory [1], finite temperature is introduced by impo...

متن کامل

Real time correlations at finite Temperature for the Ising model

After having developed a method that measures real time evolution of quantum systems at a finite temperature, we present here the simplest field theory where this scheme can be applied to, namely the 1 + 1 Ising model. We will compute the probability that if a given spin is up, some other spin will be up after a time t, the whole system being at temperature T . We can thus study spatial correla...

متن کامل

Finite Temperature Models of Bose-Einstein condensation

The theoretical description of trapped weakly-interacting Bose-Einstein condensates is characterized by a large number of seemingly very different approaches which have been developed over the course of time by researchers with very distinct backgrounds. Newcomers to this field, experimentalists and young researchers all face a considerable challenge in navigating through the ‘maze’ of abundant...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000